Minimum Inversion Number
Time Limit: 1000ms
Memory Limit: 32768KB
This problem will be judged on HDU. Original ID: 64-bit integer IO format: %I64d Java class name: Main The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj. For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following: a1, a2, ..., an-1, an (where m = 0 - the initial seqence) a2, a3, ..., an, a1 (where m = 1) a3, a4, ..., an, a1, a2 (where m = 2) ... an, a1, a2, ..., an-1 (where m = n-1) You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
101 3 6 9 0 8 5 7 4 2
Sample Output
16
Source
解题:求逆序数,很有意思的是算出原序列的逆序值后,只要加上 n - 1 - x - x就表示数列循环左移一位的逆序数值!只有从0开始且是连续的才成立。
1 #include2 using namespace std; 3 const int maxn = 5005; 4 5 int d[maxn],tree[maxn<<2],n; 6 void update(int L,int R,int id,int v) { 7 if(id <= L && id >= R) { 8 tree[v]++; 9 return;10 }11 int mid = (L + R)>>1;12 if(id <= mid) update(L,mid,id,v<<1);13 if(id > mid) update(mid+1,R,id,v<<1|1);14 tree[v] = tree[v<<1] + tree[v<<1|1];15 }16 int query(int L,int R,int lt,int rt,int v){17 if(lt <= L && rt >= R) return tree[v];18 int mid = (L + R)>>1,ans = 0;19 if(lt <= mid) ans += query(L,mid,lt,rt,v<<1);20 if(rt > mid) ans += query(mid+1,R,lt,rt,v<<1|1);21 return ans;22 }23 int main() {24 while(~scanf("%d",&n)) {25 memset(tree,0,sizeof tree);26 int ans = 0,tmp = 0;27 for(int i = 0; i < n; ++i) {28 scanf("%d",d+i);29 tmp += query(0,n-1,d[i],n-1,1);30 update(0,n-1,d[i],1);31 }32 ans = tmp;33 for(int i = 0; i < n; ++i){34 tmp += n - 1 - d[i] - d[i];35 ans = min(ans,tmp);36 }37 printf("%d\n",ans);38 }39 return 0;40 }